

Piastra per forze di taglio e trazione in connessioni legno-legno e legno-calcestruzzo

Certificato:
ETA-20/0773 Valutazione Tecnica Europea

tipo	B [mm]	H [mm]	S [mm]	fori Ø 5 [mm]	fori Ø 7 [mm]	fori Ø 13 [mm]	Art.
DENEB	222	231	2	35 + 35	2 + 2	4 + 4	5390 000 400

Sollecitazioni

Piastra di fissaggio angolare per forze di taglio e trazione ideale per il collegamento di elementi in legno a supporti in calcestruzzo o legno

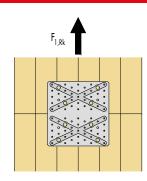
- Elevate capacità di carico per sollecitazioni di taglio e trazione
- Elevata rigidezza grazie alle nervature integrate
- Installazione possibile con differenti sistemi di fissaggio
- Ampia scelta sui di sistemi di fissaggio utilizzabili in accordo a ETA-20/0773
- Possibilità di fissaggio con chiodatura totale o parziale in accordo a ETA-20/0773
- Marcatura CE in conformità alla Valutazione Tecnica Europea ETA-20/0773

Ideona per forze di taglio [F_{2/3,R}] e forze di trazione [F_{1,R}]

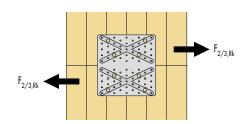
Area di applicazione

Idoneo per le costruzioni in legno, in particolare per:

- Pannelli X-LAM (CLT, BSP)
- Legno massiccio
- Legno lamellare incollato
- Legno massiccio incollato
- Legno microlamellare (LVL)


Utilizzo in classe di servizio 1 e 2 in accordo a EN 1995

Collegamenti legno-legno

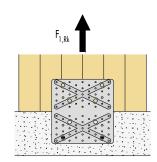

Schemi di fissaggio in accordo a ETA-20/0773

Sollecitazione di trazione Resistenza caratteristica $\mathbf{F}_{\mathrm{1,Rk}}$

	RESISTENZA	RESISTENZA			
Sistema di fissaggio		F _{1,Rk}			
		[kN]			
Тіро	n.	$\rho_k = 350 \text{ kg/m}^3$	ρ_k = 400 kg/m ³		
chiodi scanalati Ø4x50	35 + 35	46,1	49,5		
chiodi scanalati Ø4x60	35 + 35	50,5	54,3		
viti ASSY® 4 JH Ø5x50	35 + 35	59,2	64,0		
viti ASSY® 4 JH Ø5x70	35 + 35	67,0	72,7		
viti ASSY® plus VG 4 COMBI Ø12x120	4 + 4	15,4	17,2		
viti ASSY® plus VG 4 COMBI Ø12x140 4 + 4		17,1	18,6		
viti ASSY® plus VG 4 COMBI Ø12x160	4 + 4	18,4	20,0		

Sollecitazione di taglio Resistenza caratteristica F_{2/3,Rk}

	RESISTENZA	RESISTENZA			
Sistema di fissaggio		F _{2/3,Rk}			
		[kN]			
Тіро	n.	$\rho_k = 350 \text{ kg/m}^3$	$\rho_k = 400 \text{ kg/m}^3$		
chiodi scanalati Ø4x50	35 + 35	40,0	44,0		
chiodi scanalati Ø4x60	35 + 35	44,0	49,0		
viti ASSY® 4 JH Ø5x50	35 + 35	40,0	44,0		
viti ASSY® 4 JH Ø5x70	35 + 35	65,0	72,0		
viti ASSY® plus VG 4 COMBI Ø12x120	4 + 4	17,0	19,0		
viti ASSY® plus VG 4 COMBI Ø12x140	4 + 4	20,0	23,0		
viti ASSY® plus VG 4 COMBI Ø12x160	4 + 4	24,0	27,0		


Principi di calcolo collegamenti legno - legno

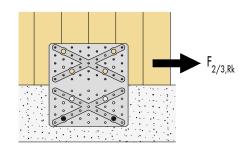
I valori di resistenza sono calcolati secondo lo standard EN 1995-1-1 ed in accordo a ETA-20/0773 (angolare DENEB) e ETA-11/0190 (viti ASSY®) I valori sono calcolati per legno con massa volumica ρ_k =350 kg/m³ e ρ k =400 kg/m³

Collegamenti legno-calcestruzzo

Schemi di fissaggio in accordo a ETA-20/0773

Sollecitazione di trazione - fissaggio con ancoranti inferiori C = 94 mm Resistenza caratteristica ${\bf F}_{1,{\rm Rk}}$

Sistema di fissaggio	RESISTENZA F _{1,Rk} [kN]			
Тіро	n.	Ancoranti	$\rho_k = 350 \text{ kg/m}^3$	
chiodi scanalati Ø4x50	35	2 x M12	min. (46,1 kN; F _{1,Rk,ancoranti})	
chiodi scanalati Ø4x60	35	2 x M12	min. (50,5 kN; F1,Rk,ancoranti)	
viti ASSY® 4 JH Ø5x50	35	2 x M12	min. (59,2 kN; F _{1,Rk,ancoranti})	
viti ASSY® 4 JH Ø5x70	35	2 x M12	min. (67,0 kN; F1,Rk,ancoranti)	
viti ASSY® plus VG 4 COMBI Ø12x120	4	2 x M12	min. (15,4 kN; F1,Rk,ancoranti)	
viti ASSY® plus VG 4 COMBI Ø12x140	4	2 x M12	min. (17,1 kN; F1,Rk,ancoranti)	
viti ASSY® plus VG 4 COMBI Ø12x160	4	2 x M12	min. (18,4 kN; F1,Rk,ancoranti)	

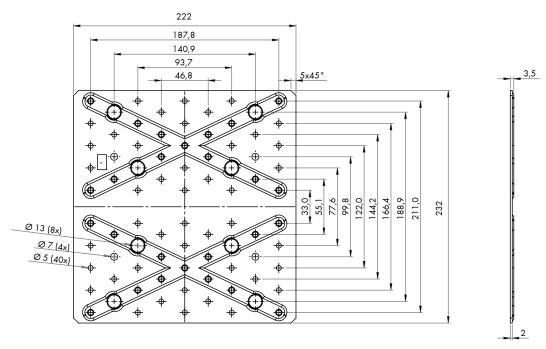

Resistenza di progetto F_{1,Rd,ancoranti}

				RESISTENZA			
Sistema di fissaggio	F _{2/3,Rd,ancoranti}						
Тіро	h _{ef} [mm]	calcestruzzo non fessurato	calcestruzzo fessurato	azione sismica C2			
W-FAZ/S M12x110	70	18,0	12,7	10,8			
WIT-VM 250 - M12 - cl. 5.8	96	19,0	13,5	_			
WIT-PE 1000 - M12 - cl. 8.8		19,9	14,1	14,1			

Collegamenti legno-calcestruzzo

Schemi di fissaggio in accordo a ETA-20/0773

Sollecitazione di taglio - fissaggio con ancoranti inferiori C = 94 mm Resistenza caratteristica $\mathbf{F}_{1,\mathrm{Rk}}$


Sistema di fissaggio	RESISTENZA F _{1,Rk} [kN]		
Тіро	n.	Ancoranti	$\rho_{\rm k}$ = 350 kg/m ³
chiodi scanalati Ø4x50	35	2 x M12	min. (13,0 kN; F2/3,Rk,ancoranti)
chiodi scanalati Ø4x60	35	2 x M12	min. (16,0 kN; F2/3,Rk,ancoranti)
viti ASSY® 4 JH Ø5x50	35	2 x M12	min. (27,0 kN; F _{2/3,Rk,ancoranti})
viti ASSY® 4 JH Ø5x70	35	2 x M12	min. (34,0 kN; F ₂ / _{3,Rk,ancoranti})
viti ASSY® plus VG 4 COMBI Ø12x120	4	2 x M12	min. (12,0 kN; F2/3,Rk,ancoranti)
viti ASSY® plus VG 4 COMBI Ø12x140	4	2 x M12	min. (15,0 kN; F2/3,Rk,ancoranti)
viti ASSY® plus VG 4 COMBI Ø12x160	4	2 x M12	min. (17,0 kN; F2/3,Rk,ancoranti)

Resistenza di progetto F_{1,Rd,ancoranti}

	RESISTENZA			
Sistema di fissaggio	F _{2/3,Rd,ancoranti}			
Тіро	h _{ef} [mm]	calcestruzzo non fessurato	calcestruzzo fessurato	azione sismica C2
W-FAZ/S M12x110	70	35,9	25,4	21,6
WIT-VM 250 - M12 - cl. 5.8	96	38,0	26,9	_
WIT-PE 1000 - M12 - cl. 8.8	120	39,8	28,2	23,9

Geometria

Principi di calcolo fissaggi calcestruzzo

I valori di resistenza sono calcolati secondo la normativa EN 1995-1-1 e EN 1992-4:2018 in accordo a ETA-20/0773 (DENEB), ETA-11/0190 (viti ASSY®), ETA-99/0011(ancorante W-FAZ/S), ETA-19/0542 (ancorante WIT-PE 1000), ETA 12/0164 (ancorante WIT-VM 250).

La resistenza di progetto della connessione si ottiene con le seguenti equazioni:

$$F_{Rd} = \min \begin{cases} \frac{F_{Rk,legno} \cdot k_{mod}}{\gamma_M} \\ F_{Rd,ancoranti} \end{cases}$$

Applicare i coefficienti di sicurezza kmod, ym in accordo alla codice di calcolo o normativa vigente.

La resistenza di progetto lato ancoranti a calcestruzzo è stata valutata considerando:

- classe del calcestruzzo C25/30;
- distanza dal bordo del calcestruzzo 94 mm (fissaggi inferiori);
- modello di calcolo in accordo a EN 1992-4:2018;
- progettazione sismica:

prestazione sismica C2

progettazione A2

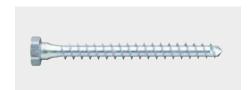
deformazioni limite in accordo ai documenti ETA di prodotto

per resistenza a taglio è prevista installazione della rondella di riempimento WIT-SHB M12, D14 (agap = 1)

Nota

I parametri meccanici, geometrici, di installazione contenuti nei documenti ETA di prodotto e/o altre normative/standard sono stati citatici in parte e riassunti in questa brochure. Si prega di osservare il testo completo delle rispettive normative e standard.

La correttezza e la conformità alle normative in vigore devono essere verificate e approvate dall'ingegnere strutturale responsabile.



Piastra DENEB PLT

Piastra di fissaggio angolare per forze di taglio e trazione ideale per il collegamento di elementi in legno a supporti in calcestruzzo o legno.

Art. 5390 000 400

ASSY PLUS VG 4 COMBI

Vite a filetto intero, con testa esagonale e gambo rinforzato sottotesta, per giunzioni acciaio-legno ad elevate capacità di carico, rinforzi strutturali per carpenteria in legno o in combinazione con il dispositivo di sollevamento DST. Punta autoforante che permette l'installazione anche con distanze dai bordi ridotte.

Art. 0150 2...

Ancorante meccanico W-FAZ/S

Ancorante meccanico ad elevate prestazioni per calcestruzzo fessurato e non fessurato. Fissaggio rapido e efficace. Possibilità di applicare carichi elevati immediatamente senza tempi di attesa. Prestazione sismica C1 e C2.

Art. 5928 2 ... 5928 212 030 ... 0904 5 ...

ASSY 4 JH

Vite a filetto intero con testa cilindrica bombata e sottotesta con collare cilindrico rinforzato. Ideale per il fissaggio della ferramenta da carpenteria su legno come angolari e piastre e per connessioni acciaio/legno.

Art. 0153 3...

Ancorante chimico WIT-UH 300

Resina reattiva bicomponente, malta ibrida uretanica vinilestere senza stirene. Ancorante ad alte prestazioni per calcestruzzo e riprese di getto con ferri di armatura (REBAR).

Art. 5918 500 420

Chiodi scanalati / Chiodi anker

Chiodi a gambo scanalato per un'aderenza migliorata e una maggior resistenza ad estrazione. In acciaio al carbonio con zincatura galvanica (A2K).

Art. 0681 94...

Ancorante chimico WIT-PE 1000

Resina epossidica pura con tempi di lavorazione elevati, ideale per grandi profondità di ancoraggio e foratura, nonché per temperature elevate. Per ancoraggi in calcestruzzo e collegamenti con ferri d'armatura post-installati (REBAR).

Art. 5918 605 ...

Barra d'ancoraggio W-VD-A/S M12

Barra d'ancoraggio W-VD-A /S in acciaio zincato classe di resistenza 5.8 e 8.8. Per sistema a iniezione WIT in calcestruzzo e muratura; completa di dado e rondella. Dotata di testa esagonale, tacca di posa e terminale a punta a forma di cuneo.

Art. 5915 112 xxx 5915 312 xxx

Rondella di riempimento WIT-SHB M12

Rondella per il riempimento dello spazio anulare tra elemento di fissaggio e ancorante (chimico o fisico) d'ancoraggio W-VD-A /S in acciaio zincato.

Art. 0903 488 412